为什么我等的公交车总是迟到?

为什么我等的公交车总是迟到?这如果不是一种错觉,那我就像拥有了超能力一样,因为我的等待而产生了神秘的力量让公交车迟到。仿佛是量子力学在宏观世界的表现,因为我的观测而对公交车产生了扰动。如果不是衰神附体,那这股神秘的力量究竟是什么?本文将使用严格的数学证明来解释这一神秘的力量。

数学证明

要使用严格的数学证明,首先我们需要用数学语言来定义问题。

首先我们定义计数过程 \(N(t)\),表示直至 \(t\) 时刻为止(含)到达的公交车的数量;第 \(n\) 辆公交车到达的时刻记作 \(S_n\),第 \(n-1\) 辆公交车与第 \(n\) 辆公交车的到达间隔记作 \(X_n\);并且我们假设公交车到达的时间间隔 \(X_n\) 是相互独立的并且都服从相同的分布 \(F\),这样的假设也符合实际的生活经验。通过以上的定义,我们便得到了一个更新过程 \(\{N(t), t \geq 0\}\)。

下面我们证明 \( P\{X_{N(t)+1} \geq x\} \geq \bar{F}(x) \),包含 \(t\) 的区间长度大于 \(x\) 的概率比普通的区间大于 \(x\) 的概率更大,也即假设我们在 \(t\) 时刻到达公交车站开始等公交车,那么我们所处的这个区间,公交车的到达间隔相较于平常为更大的概率会更大。

$$\begin{align}
P\{X_{N(t)+1} \geq x\} &= \int_0^{\infty} P\{X_{N(t)+1} \geq x | S_{N(t)} = s \}dF_{S_{N(t)}}(s)\\
&= \int_0^{\infty} P\{X_{N(t)+1} \geq x | X_{N(t) + 1} > t – s \}dF_{S_{N(t)}}(s) \\
&= \int_0^{\infty} \frac{P\{X_{N(t)+1} \geq x, X_{N(t) + 1} > t – s \}}{P\{X_{N(t) + 1} > t – s \}}dF_{S_{N(t)}}(s) \\
&= \int_0^{\infty} \frac{1 – F(max\{x, t-s\})}{1 – F(t-s)}dF_{S_{N(t)}}(s) \\
&= \int_0^{\infty} min\{\frac{1 – F(x)}{1 – F(t-s)}, \frac{1 – F(t-s)}{1 – F(t-s)}\}dF_{S_{N(t)}}(s) \\
&= \int_0^{\infty} min\{\frac{1 – F(x)}{1 – F(t-s)}, 1\}dF_{S_{N(t)}}(s) \\
&\geq \int_0^{\infty} 1 – F(x)dF_{S_{N(t)}}(s) \\
&= \bar{F}(x)
\end{align}$$

如果更加具体的假设公交车的到达间隔服从均值为 \(\lambda\) 的指数分布,也即
$$F(x) = 1 – e^{-\lambda x}$$

那么我们可以得到:

$$\begin{align}
P\{X_{N(t)+1} \geq x\} &= \int_0^{\infty} \frac{e^{-\lambda x} }{e^{-\lambda(t-s)}}dF_{S_{N(t)}}(s) \\
&= \int_0^{t-x} dF_{S_{N(t)}}(s) + \int_{t-x}^t e^{-\lambda x} dm(s) \\
&= – e^{-\lambda t} + (1 + x/\lambda)e^{-\lambda x} \\
& = – e^{-\lambda t} > \bar{F}(x)
\end{align}$$

至此我们严格证明了我们等待公交车的时间更可能比一般公交车到达的间隔要长!这看起来似乎不可理喻,然而数学不会撒谎,这就是随机过程中的检验悖论(inspection paradox)

问题出在哪?

我们的等待区间倾向于更长,这似乎与我们初始的假设独立同分布相矛盾,那么问题究竟出在哪呢?下面我们用更加直观的方式去理解这个问题。

我们将公交车的到达想象为时间轴上的一系列点,我们到达公交车站的时刻就是随机的在这个时间轴上取一点,那么很显然,我们的到达时刻落在更长的区间里的概率更大。也就是说我们的到达实际上并没有等可能地落在所有区间中,而是更加倾向于较长的区间。那么我们等待的区间更长也就不足为奇了,因为这并非是一个无条件概率,本质是一个条件概率,即在我们“随机”选中某个区间进行等待的条件下,该区间长度的分布,而我们忽略的这个条件中的“随机”并没有真的随机,因为他实际上已经为我们筛选了更长的区间。

一个更加著名也更加易于理解的例子是“飞机问题”中的幸存者偏差。在二战期间,人们发现幸存的轰炸机中,机翼中弹的数量很多,而机身中弹的却很少。因此人们认为我们应该加固飞机的机翼。其实不然,就是因为机翼中弹多还能飞回来,所以机翼中弹并没有影响飞机返航;而机身中弹的少则说明了子弹打中机身对飞机的影响更大,导致飞机不能返航。

我更喜欢用另外一个更具哲学意味的例子去阐述这个问题。产生生命的条件是如此之苛刻和机缘巧合,人类这么精巧的生命产生是几乎不可能的,为什么又会有人类产生呢?那么正是因为产生了人类,才会有人去思考这样一个问题,那么这个概率也从不可能变成了必然。

经济学的困境

这就像量子力学的测不准原理一样,因为我们的观测而对被观测对象产生的影响,从而对观测结果产生了干扰。好在与这个不同是,我们可以在公交车站等一天甚至等一年的车,通过多次观测来保证采样的无偏性,大数定律会给你答案。

然而不幸的是,并非所有的实验都可以多次进行,尤其是在社会科学比如经济学的语境下。我们很多时候只能观测和解释,并不能设计和实施实验。经济学中很多理论都是基于对经济现象的观测,根据时间的先后关联和一系列的抽象和假设对现象进行解释。然而时间的先后关联并不能代表逻辑的因果关系,更何况我们的观测反过来又会影响其本身的概率分布。就像明代思想家王阳明的那朵花一样,“你未看此花时,此花与汝心同归于寂。你来看此花时,则此花颜色一时明白起来”。

虽然这样未免太过于唯心,周遭的世界并不会由于我们的意识而存在或消失或改变,然而我想没人可以证伪我们所感受到的一切只是心中的意识,我所唯一能确定的是此刻这个宇宙中有一个人正在思考这个问题,而当我不思考的时候,这个也变得不确定起来。这就是笛卡尔所言的“我思故我在”吧。


Reference:

Ross, S. M., Kelly, J. J., Sullivan, R. J., Perry, W. J., Mercer, D., Davis, R. M., … & Bristow, V. L. (1996). Stochastic processes (Vol. 2). New York: Wiley.

《随机过程》勘误

随机过程》(英文电子版) 是 Sheldon M. Ross 所著,作为随机过程领域的经典力作,其第二版由龚光鲁老师翻译,翻译质量只能说是差强人意,对于英文水平较差无法参考英文原著的同学不是十分友好。我将学习过程中遇到的一些翻译错误在此一一列出,希望对大家有所帮助,也非常欢迎补充和指正。

p9 例1.3(C): 随机变量至少有一个值与其均值一样大
原文为: at least one of the possible value of a random variable must be at least as large as its mean
应译作:随机变量至少有一个值不小于其均值

p30 题1.17: 在……的第i个最小者中
原文为:among the i smallest of ……
应译作:在……的最小者的i个中

p31 题1.22: \(Var(X) = E[Var(X|Y)] + Var(E[E|Y])\)
原文为:\(Var(X) = E[Var(X|Y)] + Var(E[X|Y])\)

p31 题1.23:以a记质点……
原文为:Let \(\alpha\) denote the particle……
应译作: 以\(\alpha\)记质点……

p33 题1.43:此题应该少了一个条件\(t \geq 0\), 虽然本书和原书都没有这个条件,但当\(t < 0\)时,容易找出一个反例使该不等式不成立

p40 最后一段: ……中第k个最小值
原文为:kth smallest
应译作:……中第k小的值

p80 例3.5(C)第5行:直至投掷中出现两个反面
原文为:util two tails in a row occur
应译作:直至投掷中连续出现两个反面

p82 第4行:其中初始分布式\(Y_D(t)\)的分布
原文为:where the initial distribution is the distribution of \(Y_D(s)\)
应译作:其中初始分布式\(Y_D(s)\)的分布

p109 倒数第4行:令\(n\)趋向于0然后令\(M\)趋向\(\infty\),导致……
原文为:Let \(n\) and then \(M\) approach \(\infty\) yields
应译作:令\(n\)趋向于\(\infty\)然后令\(M\)趋向\(\infty\),导致……

p117 倒数第9行:且N是一个……停时
本书和原文此处都有错误,应该为“且B是一个……停时”

p128 第7行:则对\(j\)求和导致
原文为:then summing over \(i\) yields
应译作:则对\(i\)求和导致

p130 第2行:移动到它的叶子的概率
原文为:the probability that …. moves towards its leaf
应译作:向它的叶子移动的概率

p131 定理4.7.2第2行:此处应删去多余的\(i_1, i_2\)

p146 例5.3(A): 在群体中每个个体假定以指数率\(\lambda\)出生
原文为:each individual in the population is assumed to give birth at an exponential rate \(\lambda\)
应译作:在群体中每个个体假定以指数率\(\lambda\)生育(或生出新个体)

p156 5.5节第4行: 则极限概率为\(P_j = \lim_{i \to \infty}P_{ij}^t\)
原文为:then the limiting probabilities \(P_j = \lim_{t \to \infty}P_{ij}(t)\)
应译作:则极限概率为\(P_j = \lim_{t \to \infty}P_{ij}(t) \)

p185 鞅的更多例子(4): 那么如1.9节所示
本书和原文此处都有错误,关于期望平方误差的最小预测是在1.5节

p192 例6.3(B): 结束其空的状态
原文为: end up empty
应译作:以空的状态结束

p215 第4行: \(P\{\)迟早越过\(A\} \leq e^{-\theta A}\)
此不等式为不等式 (7.3.5),下文有所引用,本书漏标了这个记号

p215 倒数第8行: \(X_{n+1} + \sum_{i=1}^{n-1}(Y_i – X_{i+1})\)
原文为:\(X_{n+1} – \sum_{i=1}^{n-1}(Y_i – X_{i+1})\)

p217 第5行: \(S_n = \sum_{i=1}^{n}(Y_i – cY_i)\)
原文为:\(S_n = \sum_{i=1}^{n}(Y_i – cX_i)\)

p223 第18行: 与过程在时刻\(t\)以前的一切值独立
原文为: is independent of all process values before time \(s\)
应译作:与过程在时刻\(s\)以前的一切值独立

p302 3.17答案第3行: \(g = h + h * F = (h + g*F)*F_2\)
原文为:\(g = h + h * F + (h + g*F)*F_2\)

p305 4.13答案应为3.33题答案

p305 4.13答案第5行:$$\lim_{k \to \infty}\frac{\text{直至}N_k+m\text{访问}j\text{的次数}}{n}\frac{n}{N_k + m}$$
原文为:
$$\lim_{n \to \infty}\frac{\text{number of visits to } j\text{ by time }N_n + m}{n}\frac{n}{N_n + m}$$

p308 5.3答案:$$P\{N(t) \geq n\} \leq \sum_{j=n}^{\infty}e^{-Mt}\frac{M(t)^j}{j!}$$
原文为:$$P\{N(t) \geq n\} \leq \sum_{j=n}^{\infty}e^{-Mt}\frac{(Mt)^j}{j!}$$

p309 5.4答案最后1行:$$P_{ij}(t) = v_iP_{ij}t + o(t)$$
原文为:$$P_{ij}(t) = v_iP_{ij}(t) + o(t)$$

Solutions to Stochastic Processes Ch.8

随机过程-第二版》(英文电子版Sheldon M. Ross 答案整理,此书作为随机过程经典教材没有习题讲解,所以将自己的学习过程记录下来,部分习题解答参考了网络,由于来源很多,出处很多也不明确,无法一一注明,在此一并表示感谢!希望对大家有帮助,水平有限,不保证正确率,欢迎批评指正,转载请注明出处。
Solutions to Stochastic Processes Sheldon M. Ross Second Edition(pdf)
Since there is no official solution manual for this book, I
handcrafted the solutions by myself. Some solutions were referred from web, most copyright of which are implicit, can’t be listed clearly. Many thanks to those authors! Hope these solutions be helpful, but No Correctness or Accuracy Guaranteed. Comments are welcomed. Excerpts and links may be used, provided that full and clear credit is given.

In Problem 8.1, 8.2 and 8.3, let \(\{X(t), t \geq 0\}\) denote a Brownian motion process.

8.1 Let \(Y(t) = tX(1/t)\).
(a) What is distribution of \(Y(t)\)?
(b) Compute \(Cov(Y(s), Y(t)\)
(c) Argue that \(\{Y(t), t \geq 0\}\) is also Brownian motion
(d) Let \(T = inf\{t>0: X(t)=0\}\). Using (c) present an argument that \(P\{T = 0\} = 1\).


(a) \(X(1/t) \sim N(0, 1/t)\) then \(Y(t) = tX(1/t) \sim N(0, t)\)
(b) $$\begin{align}
Cov(Y(s), Y(t)) &= Cov(sX(1/s), tX(1/t)) \\
&= st\cdot Cov(X(1/s), X(1/t)) \\
&= st\cdot min(1/s, 1/t) = min(s, t) \end{align}$$
(c) Since \(\{X(t)\}\) is a Gaussian process so is \(\{Y(t)\}\). Further from parts (a) and (b) above \(\{Y(t)\}\) is a Brownian motion.
(d) Since \(Y(t)\) is Brownian motion then \(T_1 \equiv sup\{t: Y(t) = 0\} = \infty\) with probability 1. Note \(\{T = 0\} = \{T_1 = \infty\}\). Thus, \(P\{T = 0\} = 1\)


8.2 Let \(W(t) = X(a^2t)/a\) for \(a > 0\). Verify that \(W(t)\) is also Brownian motion.


\(W(0) = X(0)/a = 0\). Non-overlapping increments of \(W(t)\) map to non-overlapping increments of \(X(t)\). Thus increments of \(W(t)\) are independent. Further, for \(s < t\),
$$W(t) – W(s) = \frac{X(a^2t) – X(a^2s)}{a} \sim N(0, t-s)$$
Thus \(W(t)\) has stationary increments with required distribution. Therefore, \(W(t)\) is a Brownian motion.


8.5 A stochastic process \(\{X(t), t \geq 0\}\) is said to be stationary if \(X(t_1), \dots, X(t_n)\) has the same joint distribution as \(X(t_1+a), \dots, X(t_n +a)\) for all \(n, a, t_1, \dots, t_n\).
(a) Prove that a necessary and sufficient condition for a Gaussian process to be stationary is that \(Cov(X(s), X(t))\) depends only on \(t-s, s \leq t\), and \(E[X(t)] = c\).
(b) Let \(\{X(t), t \geq 0\}\) be Brownian motion and define
$$V(t) = e^{-\alpha t/2}X(\alpha e^{\alpha t})$$
Show that \(\{V(t), t \geq 0\}\) is a stationary Gaussian process. It is called Ornstein-Uhlenbeck process.


(a) If the Gaussian process is stationary then for \(t > s, (X(t), X(s))\) and \((X(t-s), X(0))\) have same distribution. Thus, \(E[X(s)] = E[X(0)]\) for all \(s\) and \(Cov(X(t), X(s)) = Cov(X(t-s), X(0))\), for all \(t < s\). Now, assume \(E[X(t)] = c\) and \(Cov(X(t), X(s)) = h(t-s)\). For any \(T = (t_1, \dots, t_k)\) define vector \(X_T \equiv (X(t_1), \dots, X(t_k))\). Let \(\tilde{T} = (t_1-a, \dots, t_k -a)\). If \(\{X(t)\}\) is a Gaussian process then both \(X_T\) and \(X_{\tilde{T}}\) are multivariate normal and it suffices to show that they have the same mean and covariance. This follows directly from the fact that they have the same element-wise mean \(c\) and the equal pair-wise covariances, \(Cov(X(t_i-a), X(t_j -a)) = h(t_i-t_j) = Cov(X(t_i), X(t_j))\)
(b) Since all finite dimensional distributions of \(\{V(t)\}\) are normal, it is a Gaussian process. Thus from part (a) is suffices to show the following:
(i) \(E[V(t)] = e^{-at/2}E[X(\alpha e^{\alpha t})] = 0\). Thus \(E[V(t)]\) is constant.
(ii) For \(s \leq t\), $$\begin{align}
Cov(V(s), V(t)) &= e^{-\alpha(t+s)/2}Cov(X(\alpha e^{\alpha s}), X(\alpha e^{\alpha t}))\\
&= e^{-\alpha(t+s)/2}\alpha e^{\alpha s} = \alpha e^{-\alpha(t-s)/2} \end{align}$$
which depends only on \(t-s\).


8.8 Suppose \(X(1) = B\). Characterize, in the manner of Proposition 8.1.1, \(\{X(t), 0 \leq t \leq 1\}\) given that \(X(1) = B\).


Condition on \(X(1) = B, X(t) \sim N(Bt, t(1-t))\), then \(Z(t) \sim N(0, t(1-t))\) which is a Brownian motion.


8.9 Let \(M(t) = max_{0 \leq s \leq t} X(s)\) and show that
$$P\{M(t) > a| M(t) = X(t)\} = e^{-a^2/2t}, \quad a > 0$$


From Section 8.3.1, we get
$$P\{M(t) > y, X(t) < x\} = \int_{2y-x}^{\infty}\frac{1}{\sqrt{2\pi t}}e^{-u^2/2t}du $$
By using Jacobian formula, we can derive the density function of \(M(t)\) and \(W(t) = M(t) – X(t)\), which we denote by \(f_{MW}\). Thus
$$f_W(w) = 2\int_0^{\infty}f_{MW}(m, w)dm \\
P\{M(t) > a | W(t) = 0\} = 1 – \int_0^a \frac{f_{MW}(m, 0)}{f_W(0)}dm$$
The last equation can be computed, which equal \(e^{-a^2/2t}\)


8.10 Compute the density function of \(T_x\), the time until Brownian motion hits \(x\).


$$\begin{align}
f_{T_x}(t) &= F_{T_x}^{\prime}(t) = (\frac{2}{\sqrt{2\pi}}\int_{|x|/\sqrt{t}}^{\infty}e^{-y^2/2}dy)^{\prime} \\
&= -\frac{2}{\sqrt{2\pi}} \cdot e^{-x^2/2t} \cdot \frac{x}{2}t^{-3/2}\\
&= -\frac{x}{\sqrt{2\pi}}e^{-x^2/2t}t^{-3/2}
\end{align}$$


8.11 Let \(T_1\) denote the largest zero of \(X(t)\) that is less than \(t\) and let \(T_2\) be the smallest zero greater than \(t\). Show that
(a) \(P\{T_2 < s\} = (2/\pi)\arccos\sqrt{t/s}, s> t\).
(b) \(P\{T_1 < s, T_2 > y\} = (2/\pi)\arcsin\sqrt{s/y}, s < t< y\).


(a) $$\begin{align}
P\{T_2 < s\} &= 1 – P\{\text{no zeros in } (t, s)\} \\
&= 1 – \frac{2}{\pi}\arcsin\sqrt{t/s} \\
&= (2/\pi)\arccos\sqrt{t/s} \end{align}$$
(b) \(P\{T_1 < s, T_2 > y\} = P\{\text{no zeros in } (s, y)\} = \frac{2}{\pi}\arcsin\sqrt{s/y}\)


8.12 Verify the formulas given in (8.3.4) for the mean and variance of \(|X(t)|\).


$$f_Z(y) = (\frac{2}{\sqrt{2\pi t}}\int_{-\infty}^y e^{-x^2/2t}dx – 1)^{\prime} = \frac{2}{\sqrt{2\pi t}}e^{-y^2/2t}\\
E[Z(t)] = \int_{0}^{\infty}yf_Z(y)dy = -\frac{2t}{\sqrt{2\pi t}}e^{-y^2/2t}|_0^{\infty} = \sqrt{2t/\pi} \\
Var(Z(t)) = E[Z^2(t)] – E^2[Z(t)] = E[X^2(t)] – E^2[Z(t)] = (1 – \frac{2}{\pi})t$$


8.13 For Brownian motion with drift coefficient \(\mu\), show that for \(x>0\)
$$P\{max_{0 \leq s \leq h} |X(s)| > x\} = o(h).$$



8.18 Let \(\{X(t), t \geq 0\}\) be a Brownian motion with drift coefficient \(\mu, \mu < 0\), which is not allowed to become negative. Find the limiting distribution of \(X(t)\).



8.19 Consider Brownian motion with reflecting barriers of \(-B\) and \(A, A >0, B > 0\). Let \(p_t(x)\) denote the density function of \(X_t\).
(a) Compute a differential equation satisfied by \(p_t(x)\).
(b) Obtain \(p(x) = \lim_{t \to \infty} p_t(x)\).



8.20 Prove that, with probability 1, for Brownian motion with drift \(\mu\).
$$\frac{X(t)}{t} \to \mu, \quad \text{ as } t \to \infty$$



8.21 Verify that if \(\{B(t), t \geq 0\}\) is standard Brownian motion then \(\{Y(t), t \geq 0\}\) is a martingale with mean 1, when \(Y(t) = exp\{cB(t) – c^2t/2\}\)


$$\begin{align}
E[Y(t)] &= \int_{-\infty}^{\infty} exp\{cx – c^2t/2\}\frac{1}{\sqrt{2\pi t}}exp\{-x^2/2t\}dx\\
&= \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi t}}exp\{-(x-ct)^2/2t\}dx = 1 \end{align}$$ $$\begin{align}
E[Y(t)|Y(u), 0 \leq u \leq s] &= Y(s) + E[Y(t) – Y(s)|Y(u), 0 \leq u \leq s ]\\
&= Y(s) \cdot E[exp\{c(B(t) – B(s)) – c^2(t-s)/2\}] \\
&= Y(s) \cdot E[Y(t-s)] = Y(s)
\end{align}$$


8.22 In Problem 8.16, find \(Var(T_a)\) by using a martingale argument.



8.23 Show that
$$p(x,t;y) \equiv \frac{1}{\sqrt{2\pi t}}e^{-(x – y – \mu t)^2/2t}$$
satisfies the backward and forward diffusion. Equations (8.5.1) and (8.5.2)


Just do it : )


8.24 Verify Equation (8.7.2)


Let \(f(s, y) = [\phi(se^{-\alpha y}) – 1]dy\), then
$$\begin{align}
E[X(t)] &=\frac{d}{ds}E[exp\{sX(t)\}]|_{s=0} \\
&= exp\{\lambda\int_0^t f(0, y)dy\} \lambda \int_0^t \frac{d}{ds}f(s, y)|_{s=0} dy \\
&= \lambda E[X](1 – e^{-\alpha t})/\alpha\\
Var(X(t)) &= E[X^2(t)] – E^2[X(t)] \\
&= \frac{d^2}{ds^2}E[exp\{sX(t)\}]|_{s=0} – E^2[X(t)] \\
&= \lambda E[X^2](1 – e^{-2\alpha t})/2\alpha
\end{align}$$


8.25 Verify that \(\{X(t) = N(t + L) – N(t), t \geq 0\}\) is stationary when \(\{N(t)\}\) is a Poisson process.


For any \(t, X(t) = N(t + L) – N(t) = N(L)\), thus
$$E[X(t)] = E[N(L)] = \lambda L\\
Cov(X(t), X(t+s)) = Var(N(L)) = \lambda L$$


8.26 Let \(U\) be uniformly distributed over \((-\pi, \pi)\), and let \(X_n = cos(nU)\). By using trigonometric identity
$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)]$$
verify that \(\{X_n, n \geq 1\}\) is a second-order stationary process.


$$\begin{align}
E[X_n] &= \frac{1}{n\pi}\int_{-n\pi}^{n\pi} \cos xdx = 0\\
Cov(X_{n+L}, X_n) &= E[X_{n+L}X_n] – E[X_{n+L}]E[X_n] \\
&= \frac{1}{2}E[X_{2n+L} + X_L] = 0
\end{align}$$


8.27 Show that
$$\sum_{i=1}^n \frac{R(i)}{n} \to 0 \quad \text{implies} \quad {\sum\sum}_{i < j < n}\frac{R(j-i)}{n^2} \to 0$$
thus completing the proof of Proposition 8.8.1



8.28 Prove the Cauchy-Schwarz inequality:
$$(E[XY])^2 \leq E[X^2]E[Y^2]$$
(Hint: Start with the inequality \(2|xy| \leq x^2 + y^2\) and then substitute \(X/\sqrt{E[X^2]}\) for \(x\) and \(Y/\sqrt{E[Y^2]}\) for \(y\))


Since \(2xy \leq x^2 + y^2\), then
$$\begin{align}
2\frac{X}{\sqrt{E[X^2]}}\frac{Y}{\sqrt{E[Y^2]}} &\leq \frac{X^2}{E[X^2]} + \frac{Y^2}{E[Y^2]} \\
E[2\frac{X}{\sqrt{E[X^2]}}\frac{Y}{\sqrt{E[Y^2]}}] &\leq E[\frac{X^2}{E[X^2]} + \frac{Y^2}{E[Y^2]}]\\
2\frac{E[XY]}{\sqrt{E[X^2]E[Y^2]}} &\leq 2\\
(E[XY])^2 &\leq E[X^2]E[Y^2] \end{align}$$


8.29 For a second-order stationary process with mean \(\mu\) for which \(\sum_{i=0}^{n-1}R(i)/n \to 0\), show that for any \(\varepsilon > 0\)
$$\sum_{i=0}^{n-1}P\{|\bar{X_n} – \mu| > \varepsilon \} \to 0 \quad \text{as } n \to \infty$$




Solutions to Stochastic Processes Ch.7

随机过程-第二版》(英文电子版Sheldon M. Ross 答案整理,此书作为随机过程经典教材没有习题讲解,所以将自己的学习过程记录下来,部分习题解答参考了网络,由于来源很多,出处很多也不明确,无法一一注明,在此一并表示感谢!希望对大家有帮助,水平有限,不保证正确率,欢迎批评指正,转载请注明出处。
Solutions to Stochastic Processes Sheldon M. Ross Second Edition(pdf)
Since there is no official solution manual for this book, I
handcrafted the solutions by myself. Some solutions were referred from web, most copyright of which are implicit, can’t be listed clearly. Many thanks to those authors! Hope these solutions be helpful, but No Correctness or Accuracy Guaranteed. Comments are welcomed. Excerpts and links may be used, provided that full and clear credit is given.

7.1 Consider the following model for the flow of water in and out of a dam. Suppose that, during day \(n, Y_n\) units of water flow into the dam from outside sources such as rainfall and river flow. At the end of each day, water is released from the dam according to the following rule: If the water content of the dam is greater than \(a\), then the amount of \(a\) is released. If it is less than or equal to \(a\), then the total contents of the dam are released. The capacity of the dam is \(C\), and once at capacity any additional water that attempts to enter the dam is assumed lost. Thus, for instance, if the water level at the beginning of day \(n\) is \(x\), then the level at the end of the day (before any water is released) is \(min(x + Y_n, C)\). Let \(S_n\) denote the amount of water in the dam immediately after the water been released at the end of day \(n\). Assuming that the \(Y_n, n \geq 1\), are independent and identically distributed, show that \(\{S_n, n \geq 1\}\) is a random walk with reflecting barriers at 0 and \(C-a\).



7.2 Let \(X_1, \dots, X_n\) be equally likely to be any of the \(n!\) permutations of \((1,2,\dots, n)\). Argue that,
$$P\{\sum_{j=1}^njX_j \leq a\} = P\{\sum_{j=1}^njX_j\geq n(n+1)^2/2 -a\}$$


$$\begin{align}
P\{\sum_{j=1}^njX_j \leq a \} &= P\{nS_n – \sum_{i=1}^{n-1}S_i \leq a\} \\
&= P\{\sum_{i=1}^nS_i \geq (n+1)S_n – a\} \\
&= P\{\sum_{j=1}^njX_j\geq n(n+1)^2/2 -a\} \end{align}$$


7.3 For the simple random walk compute the expected number of visits to state \(k\).


Suppose \(p \geq 1/2\), and starting at state \(i\). When \(i \leq k\),
$$p_{ik} = 1 \\
f_{kk} = 2 -2p\\
E = 1 + \frac{1}{2p – 1}$$
When \(i > k\)
$$p_{ik} = (\frac{1-p}{p})^{i – k}\\
f_{kk} = 2 – 2p\\
E = p_{ik}(1 + \frac{1}{2p-1})$$


7.4 Let \(X_1, X_2, \dots, X_n\) be exchangeable. Compute \(E[X_1|X_{(1)}, X_{(2)}, \dots, X_{(n)}]\), where \(X_{(1)} \leq X_{(2)} \leq \dots \leq X_{(n)}\) are the \(X_i\) in ordered arrangement.


Since \(X_i\) is exchangeable, \(X_1\) can be any of \(X_{(i)}\) with equal probability. Thus,
$$E[X_1|X_{(1)}, X_{(2)}, \dots, X_{(n)}] = \frac{1}{n}\sum_{i=1}^nX_{(i)}$$


7.6 An ordinary deck of cards is randomly shuffled and then the cards are exposed one at a time. At some time before all the cards have been exposed you must say “next”, and if the next card exposed is a spade then you win and if not then you lose. For any strategy, show that at the moment you call “next” the conditional probability that you win is equal to the conditional probability that the last card is spade. Conclude from this that the probability of winning is 1/4 for all strategies.


Let \(X_n\) indicate if the nth card is a spade and \(Z_n\) be the proportion of spades in the remaining cards after the \(n\) card. Thus \(E|Z_n| < \infty\) and
$$E[Z_{n+1}|Z_1, \dots , Z_n] = \frac{(52 -n)Z_n – 1}{52 -n-1}Z_n + \frac{(52-n)Z_n}{52-n-1}(1 – Z_n) = Z_n$$
Hence \(Z_n\) is a martingale.
Note that \(X_52 = Z_51\). Thus
$$\begin{align}
E[X_{n+1}|X_1, \dots, X_n]&= E[X_{n+1}|Z_1, \dots, Z_n] = Z_n\\
&= E[Z_51|Z_1, \dots, Z_n] = E[X_52|X_1, \dots, X_n]
\end{align}$$
Finally, let \(N\) be the stopping time corresponding to saying “next” for a given strategy.
$$\begin{align}
P\{\text{Win}\} &= E[X_{N+1}] = E[E[X_{N+1}|N]] \\
&= E[Z_N] = E[Z_1] = 1/4
\end{align}$$


7.7 Argue that the random walk for which \(X_i\) only assumes the values \(0, \pm 1, \dots, \pm M\) and \(E[X_i] = 0\) is null recurrent.



7.8 Let \(S_n, n \geq 0\) denote a random walk for which
$$\mu = E[S_{n+1} – S_n] \neq 0$$
Let, for \(A >0, B > 0\),
$$N = min\{n: S_n \geq A \text{ or } S_n \leq -B\}$$
Show that \(E[N] < \infty\). (Hint: Argue that there exists a value \(k\) such that \(P\{S_k > A +B\} > 0\). Then show that \(E[N] \leq kE[G]\), where \(G\) is an appropriately defined geometric random variable.)


Suppose \(\mu > 0\), and let \(k > (A+B)/\mu\), then
$$\begin{align}
k\mu – A -B &= E[S_k – A – B] \\
&= E[S_k – A – B|S_k > A + B]P\{S_k > A+B\} \\&+ E[S_k – A – B|S_k \leq A + B]P\{S_k \leq A+B\}\\
&\leq E[S_k – A – B|S_k > A + B]P\{S_k > A+B\}
\end{align}$$ Thus, there exists \(k > (A+B)/\mu, p = P\{S_k > A +B\} > 0\). Let \(Y_i = \sum_{j = ik+1}^{(i+1)k} X_j\), then \(P\{Y_i > A + B\} = p\). And it’s obviously that if any of \(Y_i\) exceeds \(A+B\), \(S_N\) occurs. Hence, \(E[N] \leq k/p\)


7.10 In the insurance ruin problem of Section 7.4 explain why the company will eventually be ruined with probability 1 if \(E[Y] \geq cE[X]\).



7.11 In the ruin problem of Section 7.4 let \(F\) denote the interarrival distribution of claims and let \(G\) be the distribution of the size of a claim. Show that \(p(A)\), the probability that a company starting with \(A\) units of assets is ever ruined, satifies
$$p(A) = \int_0^{\infty}\int_0^{A + ct}p(A + ct -x)dG(x)dF(t) + \int_0^{\infty}\bar{G}(A+ct)dF(t)$$


Condition on the first claim, then
$$\begin{align}
p(A) &= P\{\text{ruined at first claim}\} + P\{\text{ruined after first claim}\} \\
&= \int_0^{\infty}\bar{G}(A+ct)dF(t) + \int_0^{\infty}\int_0^{A + ct}p(A + ct -x)dG(x)dF(t)
\end{align}$$


7.12 For a random walk with \(\mu = E[X] > 0\) argue that, with probability 1,
$$\frac{u(t)}{t} \to \frac{1}{\mu} \quad \text{as } t \to \infty$$
where \(u(t)\) equals the number of \(n\) for which \(0 \leq S_n \leq t\).



7.13 Let \(S_n = \sum_{i=1}^n X_i\) be a random walk and let \(\lambda_i, i > 0\), denote the probability that a ladder height equals \(i\) — that is, \(\lambda_i = P\){first positive value of \(S_n\) equals \(i\)}.
(a) Show that if
$$P\{X_i = j\} = \left\{\begin{array}{ll}
q \quad j = -1 \\
\alpha_j \quad j \geq 1 \\ \end{array}\right. \\
q + \sum_{j=1}^{\infty} \alpha_j = 1$$
then \(\lambda_i\) satisfies
$$\lambda_i = \alpha_i + q(\lambda_{i+1} + \lambda_1\lambda_i) \quad i > 0$$
(b) If \(P\{X_i = j\} = 1/5, j = -2,-1,0,1,2\), show that
$$\lambda_1 = \frac{1+\sqrt{5}}{3+\sqrt{5}} \quad \lambda_2 = \frac{2}{3+\sqrt{5}} $$



7.14 Let \(S_n, n\geq 0\), denote a random walk in which \(X_i\) has distribution \(F\). Let \(G(t,s)\) denote the probability that the first value of \(S_n\) that exceeds \(t\) is less than or equal to \(t+s\). That is,
$$G(t,s) = P\{\text{first sum exceeding } t \text{ is } \leq t+s\}$$
Show that
$$G(t, s) = F(t + s) – F(t) + \int_{-\infty}^t G(t-y, s)dF(y)$$


\(S_n|X_1\) is distributed as \(X_1 + S_{n-1}\). Thus if \(A\)={first sum exceeding \(t\) is \(\leq t + s\)},
$$\begin{align}
G(t,s) &\equiv P\{A\} = E[P\{A|X_1\}] \\
&= F(t+s) – F(t) + \int_{-\infty}^t G(t-y, s)dF(y)
\end{align}$$


Solutions to Stochastic Processes Ch.6

随机过程-第二版》(英文电子版Sheldon M. Ross 答案整理,此书作为随机过程经典教材没有习题讲解,所以将自己的学习过程记录下来,部分习题解答参考了网络,由于来源很多,出处很多也不明确,无法一一注明,在此一并表示感谢!希望对大家有帮助,水平有限,不保证正确率,欢迎批评指正,转载请注明出处。
Solutions to Stochastic Processes Sheldon M. Ross Second Edition(pdf)
Since there is no official solution manual for this book, I
handcrafted the solutions by myself. Some solutions were referred from web, most copyright of which are implicit, can’t be listed clearly. Many thanks to those authors! Hope these solutions be helpful, but No Correctness or Accuracy Guaranteed. Comments are welcomed. Excerpts and links may be used, provided that full and clear credit is given.

6.1 If \(\{Z_n, n \geq 1 \}\) is a martingale show that, for \(1 \leq k < n,\)
$$E[Z_n|Z_1, \dots, Z_k] = Z_k$$


$$\begin{align}
E[Z_n|Z_1, \dots, Z_k] &= E[E[Z_n|Z_1, \dots, Z_{n-1}]|Z_1, \dots, Z_k]\\
&= E[Z_{n-1}|Z_1, \dots, Z_k]\\
&\dots\\
&=E[Z_{k+1}|Z_1, \dots, Z_k] = Z_k
\end{align}$$


6.3 Verify that \(X_n/m^n, n\geq 1\), is a martingale when \(X_n\) is the size of the nth generation of a branching process whose mean number of offspring per individual is \(m\)


$$\begin{align}
E[\frac{X_{n+1}}{m^{n+1}}|\frac{X_1}{m}, \dots, \frac{X_n}{m^n}]&=E[\frac{\sum_{i=1}^{X_n}Z_i}{m^{n+1}}|\frac{X_1}{m}, \dots, \frac{X_n}{m^n}] \\
&= E[\frac{mX_n}{m^{n+1}}|\frac{X_1}{m}, \dots, \frac{X_n}{m^n}] \\
&= \frac{X_n}{m^n}
\end{align}$$


6.4 Consider the Markov chain which at each transition either goes up 1 with probability \(p\) or down with probability \(q = 1 – p\). Argue that \((q/p)^{S_n}, n \geq 1\), is a martingale.


$$\begin{align}
E[(q/p)^{S_{n+1}}|(q/p)^{S_1}, \dots, (q/p)^{S_n}]&= E[(q/p)^{S_n}(q/p)^{X_{n+1}}|(q/p)^{S_1}, \dots, (q/p)^{S_n}] \\
&= (q/p)^{S_n} E[(q/p)^{X_{n+1}}] \\
&= (q/p)^{S_n}
\end{align}$$


6.5 Consider a Markov chain \(\{X_n, n \geq 0\}\) with \(p_{NN} = 1\). Let \(P(i)\) denote the probability that this chain eventually enters state \(N\) given that it starts in state \(i\). Show that \(\{P(X_n), n \geq 0\}\) is a martingale.


$$\begin{align}
E[P(X_{n+1})|P(X_0), \dots, P(X_n)]&= \sum_k P_{X_n, k}P(k) \\
&=P(X_n)
\end{align} $$


6.6 Let \(X(n)\) denote the size of the nth generation of a branching process, and let \(\pi_0\) denote the probability that such a process, starting with a single individual, eventually goes extinct. Show that \(\{\pi_0^{X_n}, n \geq 0\}\) is a martingale.


$$\begin{align}
E[\pi_0^{X_{n+1}}|\pi_0^{X_1}, \dots, \pi_0^{X_n}]&= \prod_{i=1}^{X_n}E[\pi_0^{Z_i}|\pi_0^{X_1}, \dots, \pi_0^{X_n}] \\
&=\pi_0^{X_n}
\end{align}$$


6.9 A process \(\{Z_n, n \geq 1\}\) is said to be a reverse, or backwards, martingale if \(E|Z_n| < \infty\) for all \(n\) and
$$E[Z_n|Z_{n+1}, Z_{n+2}, \dots] = Z_{n+1}$$
Show that if \(X_i, i \geq 1\), are independent and identically distributed random variables with finite expectation, then \(Z_n = (X_1 + \dots + X_n)/n, n \geq 1\), is a reverse martingale.


$$\begin{align}
&E[Z_n|Z_{n+1}, Z_{n+2}, \dots]\\
=& E[\frac{(n+1)Z_{n+1} – X_{n+1}}{n}|Z_{n+1}, Z_{n+2}, \dots ] \\
=& E[Z_{n+1}|Z_{n+1}, Z_{n+2}, \dots] + \frac{1}{n}E[\frac{\sum_{i=1}^{n+1}X_i}{n+1} – X_{n+1}| Z_{n+1}, Z_{n+2}, \dots] \\
=& Z_{n+1}
\end{align}$$


6.10 Consider successive flips of a coin having probability \(p\) of landing heads. Use a martingale argument to compute the expected number of flips until the following sequences appear:
(a) HHTTHHT
(b) HTHTHTH


(a) $$X_n = N-2 – (p^{-4}q^{-3} – 1) – (p^{-2}q^{-1} – 1) \\
E[N] = E[X_n] + p^{-4}q^{-3} + p^{-2}q^{-1} = p^{-4}q^{-3} + p^{-2}q^{-1} $$
(b) $$E[N] = p^{-4}q^{-3} + p^{-3}q^{-2} + p^{-2}q^{-1} + p^{-1} $$


6.11 Consider a gambler who at each gamble is equally likely to either win or lose 1 unit. Suppose the gambler will quit playing when his winnings are either \(A\) or \(-B, A > 0, B > 0\). Use an appropriate martingale to show that the expected number of bets is \(AB\).


Similar to Example 6.2(C), let two players with A and B coins. When the gambler win, one player gives a coin to another.


6.12 In Example 6.2(C), find the expected number of stages until one of the players is eliminated.


$$M_n = X_nY_nZ_n + ns/3\\
E[M_T] = E[M_0] = xyz\\
M_T = ns/3$$
It’s easy to prove that \(M_n\) is a martingale. Then \(E[T] = 3E[M_T]/s = 3xyz/s\)


6.13 Let \(Z_n = \prod_{i=1}^n X_i\), where \(X_i, i \geq 1\) are independent random variables with$$P\{X_i = 2\} = P\{X_i = 0\} = 1/2$$
Let \(N = Min\{n: Z_n = 0\}\). Is the martingale stopping theorem applicable? If so, what would you conclude? If not, why not?


Not applicable.


6.14 Show that the equation
$$e^{\beta} – e^{-\beta} = 2\beta e^{\beta^2/2}$$
has no solution when \(\beta \neq 0\).
(Hint: Expand in a power series.)


$$\begin{align}
&e^{\beta} – e^{-\beta} – 2\beta e^{\beta^2/2}\\
=& \sum_{i=0}^{\infty} \beta^{2i+1}(1/(2i+1)! – 1/(i!2^i)) \\ \end{align}$$
Since, it equals zero iff \(\beta = 0\).


6.15 Let \(X\) denote the number of heads in \(n\) independent flips of a fair coin. Show that:
(a) \(P\{X- n/2 \geq a\} \leq exp\{-2a^2/n\}\)
(b) \(P\{X- n/2 \leq -a\} \leq exp\{-2a^2/n\}\)


\(Z_i = X_i – i/2\) is a martingale with mean 0, and \(-1/2 \leq Z_i – Z_{i-1} \leq 1/2\). From Azuma inequality, we get the result.


6.16 Let \(X\) denote the number of successes in \(n\) independent Bernoulli trials, with trial \(i\) resulting in a success with probability \(p_i\). Given an upper bound for \(P\{|X – \sum_{i=1}^n p_i| \geq a\}\).


\(Z_i = X_i – \sum_{k=1}^ip_k\) is a martingale with mean 0. and \(0 \leq Z_i – Z_{i-1} \leq 1\). From Azuma inequality,
$$ P\{X – \sum_{i=1}^n p_i \geq a\} \leq 2exp\{-2a^2/n\} \\
P\{X – \sum_{i=1}^n p_i \leq -a\} \leq 2exp\{-2a^2/n\} $$


6.17 Suppose that 100 balls are to be randomly distributed among 20 urns. Let \(X\) denote the number of urns that contains at least five balls. Derive an upper bound for \(P\{X \geq 15\}\).


$$E[X] = 20[1 – \sum_{k=0}^4{100 \choose k}(\frac{1}{20})^k(\frac{19}{20})^{100-k}]$$
And it’s easy to see that, if \(x\) and \(y\) differ in at most one coordinate, then \(|h(x) – h(y)| \leq 1\). Thus,
$$P\{X – E[X] \geq a\} \leq exp\{-a^2/200\}$$
Let \(a = 15 – E[X]\), we get the result.


6.18 Let \(p\) denote the probability that a random selection of 88 people will contain at least three with the same birthday. Use Azuma’s inequality to obtain an upper bound on \(p\). (It can be shown that \(p \approx 0.50\)).


Similarly to Problem 6.17,
$$p \leq exp\{-a^2/176\} \\
a = 1 – E[X]\\
E[X] = 365[1 – \sum_{i=0}^2{88 \choose i}(\frac{1}{365})^i(\frac{364}{365})^{88-i}]$$


6.19 For binary n-vectors \(\boldsymbol x\) and \(\boldsymbol y\) (meaning that each coordinate of these vectors is either 0 or 1) define the distance between them by
$$\rho(\boldsymbol x, \boldsymbol y) = \sum_{i=1}^n |x_i – y_i|$$
(This is called the Hamming distance). Let \(A\) be a finite set of such vectors, and let \(X_1, \dots, X_n\) be independent random variables that are each equally likely to be either 0 or 1. Set $$D = min_{y \in A} \rho(\boldsymbol X, \boldsymbol y)$$
and let \(\mu = E[D]\). In terms of \(\mu\), find an upper bound for \(P\{D \geq b\}\) when \(b > \mu\)


It easy to see that \(|h(x) – h(y)| \leq 1\), thus
$$P\{D – E[D] \geq a\} \leq exp\{-a^2/2n\}$$
Let \(a + E[D] = b\), we get
$$P\{D \geq b\} \leq exp\{-(b – \mu)^2/2n\}$$


6.21 A group of \(2n\) people, consisting of \(n\) men and \(n\) women, are to be independently distributed among \(m\) rooms. Each woman chooses room \(j\) with probability \(p_j\) while each man chooses it with probability \(q_j, j = 1, \dots, m\). Let \(X\) denote the number of rooms that will contain exactly one man and one woman.
(a) Find \(\mu = E[X]\)
(b) Bound \(P\{|X – \mu| > b\}\) for \(b > 0\)


(a) \(E[X] = \sum_{i=1}^m{n \choose 1}p_i(1-p_i)^{n-1}{n \choose 1}q_i(1-q_i)^{n-1} \)
(b) Let \(2a = b\) then, \(P\{|X – \mu| > b\} \leq exp\{-b^2/16n\}\)


6.22 Let \(\{X_n, n \geq 0\}\) be a Markov process for which \(X_0\) is uniform on (0, 1) and, conditional on \(X_n\),
$$X_{n+1} = \left\{\begin{array}{ll}
\alpha X_n + 1 – \alpha \quad \text{with probability } X_n \\
\alpha X_n \quad \text{with probability } 1 – X_n \\ \end{array}\right. $$
where \(0 < \alpha < 1\). Discuss the limiting properties of the sequence \(X_n, n \geq 1\).


$$E[X_{n+1}|X_n] = X_n(\alpha X_n + 1 – \alpha) + (1 – X_n)\alpha X_n = X_n$$
Thus, \(X_n\) is martingale, and \(E[|X_n|] = E[X_n] = E[X_1] < \infty\), so the limit exists.


6.23 An urn initially contains one white and one black ball. At each stage a ball is drawn and is then replaced in the urn along with another ball of the same color. Let \(Z_n\) denote the fraction of balls in the urn that are white after the nth replication.
(a) Show that \(\{Z_n, n \geq 1\}\) is a martingale.
(b) Show that the probability that the fraction of white balls in the urn is ever as large as 3/4 is at most 2/3.


(a) $$\begin{align}
&E[Z_{n+1}|Z_1, \dots, Z_n] \\
=&Z_n\frac{(n+2)Z_n + 1}{n+3} + (1-Z_n)\frac{(n+2)Z_n}{n+3}\\
=&Z_n\end{align}$$
(b) $$P\{max(Z_1, \dots, Z_n) > 3/4\} \leq 4E[Z_n]/3 = 4E[Z_1]/3 = 2/3$$


6.24 Consider a sequence of independent tosses of a coin and let \(P\{head\}\) be the probability of a head on any toss. Let \(A\) be the hypothesis that \(P\{head\} = a\) and let \(B\) be the hypothesis that \(P\{head\} = b, 0 < a,b < 1\). Let \(X_i\) denote the outcome of the ith toss and let
$$Z_n = \frac{P\{X_1, \dots, X_n|A\}}{P\{X_1, \dots, X_n|B\}}$$
Show that if \(B\) is true, then:
(a) \(Z_n\) is a martingale, and
(b) \(\lim_{n \to \infty} Z_n\) exists with probability 1.
(c) If \(b = \neq a\), what is \(\lim_{n \to \infty} Z_n\)?


(a) Let \(X_i=1\) if the outcome of the ith toss is head, \(X_i = 0\) if it is tail. From independence,
$$Z_n = \frac{P\{X_1, \dots, X_n|A\}}{P\{X_1, \dots, X_n|B\}} = Z_{n-1}\frac{P\{X_n|A\}}{P\{X_n|B\}}$$ Now,
$$E[\frac{P\{X_n|A\}}{P\{X_n|B\}}] = E[\frac{a^{X_n}(1-a)^{1-X_n}}{b^{X_n}(1-b)^{1-X_n}}] = \frac{a}{b}b + \frac{1-a}{1-b}(1-b) = 1$$
(b) Since \(Z_n\) is a nonnegative martingale, from Corollary 6.4.7, the limit exists.
(c) From (a), it is clear that \(Z_n\) can have a finite (random or constant) non-zero limit only if
$$\lim_{n \to \infty}\frac{P\{X_n|A\}}{P\{X_n|B\}} = 1$$
with probability 1. However for \(a\neq b\) it is not possible. Thus the limit is 0.


6.25 Let \(Z_n, n \geq 1\), be a sequence of random variables such that \(Z_1 \equiv 1\) and given \(Z_1, \dots, Z_{n-1}, Z_n\) is a Poisson random variable with mean \(Z_{n-1}, n > 1\). What can we say about \(Z_n\) for \(n\) large?


\(Z_n\) is nonnegative martingale, and \(E[Z_n] =E[Z_1] = 1\). Thus the limit of \(Z_n\) exists.


6.26 Let \(X_1, X_2, \dots\) be independent and such that
$$P\{X_i = -1\} = 1 – 1/2^i\\
P\{X_i = 2^i – 1\} = 1/2^i, \quad i \geq 1$$
Use this sequence to construct a zero mean martingale \(Z_n\) such that \(\lim_{n \to \infty}Z_n = -\infty\) with probability 1. (Hint: Make use of the Borel-Cantelli lemma)


It is easy to see that \(Z_n = \sum_{i=1}^nX_i\) is a martingale with mean 0. And
$$\sum_{i=1}^{\infty} P\{X_i = 2^i – 1\} = 1/4 < \infty$$
From Borel-Cantelli lemma,
$$P\{X_i \text{ is positive occurs infinite}\} = 0\\
P\{X_i \text{ is negative occurs infinite}\} = 1 $$
Thus, \(\lim_{n \to \infty}Z_n = -\infty\)


A continuous-time process \(\{X(t), t \geq 0\}\) is said to be a martingale if \(E[|X(t)|] < \infty\) for all \(t\) and, for all \(s < t\),
$$E[X(t)|X(u), 0 \leq u \leq s] = X(s)$$

6.27 Let \(\{X(t), t \geq 0\}\) be a continuous-time Markov chain with infinitesimal transition rates \(q_{ij}, i \neq j\). Given the conditions on the \(q_{ij}\) that result in \(\{X(t), t \geq 0\}\) being a continuous-time martingale.



Do Problem 6.28-6.30 under the assumptions that (a) the continuous-time analogue of the martingale stopping theorem is valid, and (b) any needed regularity conditions are satisfied.

6.28 Let \(\{X(t), t \geq 0\}\) be a nonhomogeneous Poisson process with intensity function \(\lambda(t), t \geq 0\). Let \(T\) denote the time at which the nth event occurs. Show that
$$n = E[\int_0^T \lambda(t)dt]$$



6.29 Let \(\{X(t), t \geq 0\}\) be a continuous-time Markov chain that will, in finite expected time, enter a an absorbing state \(N\). Suppose that \(X(0) = 0\) and let \(m_i\) denote the expected time the chain is in state \(i\). Show that for \(j \neq 0, j\neq N\).
(a) \(E[\)number of times the chain leaves state \(j]=v_j m_j\), where \(1/v_j\) is the mean time the chain spends in \(j\) during a visit.
(b) \(E[\)number of times it enters state \(j] = \sum_{i \neq j}m_i q_{ij}\).
(c) Argue that
$$v_jm_j = \sum_{i \neq j}m_iq_{ij}, \quad j \neq 0 \\
v_0m_0 = 1 + \sum_{i \neq 0}m_iq_{i0}$$



6.30 Let \(\{X(t), t \geq 0\}\) be a compound Poisson process with Poisson rate \(\lambda\) and component distribution \(F\). Define a continuous-time martingale related to this process.